DACLC 2023

Maternal inflammation and human milk composition; maternal predictors and associations with infant outcomes – Results from the MILQ study

Sophie Hilario Christensen, PhD Department of Nutrition, Exercise and Sports

Århus, 9. oktober 2023

KØBENHAVNS UNIVERSITET

BILL & MELINDA GATES foundation

OVERWEIGHT AND OBESITY DURING PREGNANCY

Rates of obesity during pregnancy is increasing \rightarrow adverse pregnancy outcomes

- Obesity increases the risk of
 - ✓ Birth-related complications
 - $\checkmark\,$ Gestational diabetes and preeclampsia
 - ✓ Long-term disease risk (maternal)
 - ✓ Long-term disease risk (infant)
- Birthweight as main predictor for disease risk

Charlotte Brøns¹ · Dorte Vistisen^{1,6} · Allan A. Vaag^{1,7,8}

ADIPOSITY AND LOW-GRADE INFLAMMATION

BREASTFEEDING AND LACTATIONAL PROGRAMMING

• Breastfeeding reduces the risk of later overweight in the offspring

- Appetite-regulating hormones
 - Leptin, adiponectin, insulin

... But other mechanisms are likely involved

HUMAN MILK STUDIES

Diverging methodologies

High heterogeneity among studies

RESEARCH

Open Access

Check for updates

Does human milk composition predict later risk of obesity? A systematic review

Mayara Vieira Queiroz De Paula^{1*}, Maude Grant^{1,2}, Julie Lanigan¹ and Atul Singhal¹

MOTHER-MILK-INFANT TRIAD

The Mothers, Infants, and Lactation Quality (MILQ) Study: A Multi-Center Collaboration

Lindsay H Allen,^{1,2} Daniela Hampel,^{1,2} Setareh Shahab-Ferdows,^{1,2} Maria Andersson,³ Erica Barros,⁴ Andrew M Doel,⁵ Kamilla Gehrt Eriksen,⁶ Sophie Hilario Christensen,⁶ Munirul Islam,⁷ Gilberto Kac,⁴ Farhana Khanam Keya,⁷ Kim F Michaelsen,⁶ Daniela de Barros Mucci,⁴ Fanta Njie,⁸ Janet M Peerson,¹ and Sophie E Moore^{4,8}

Vit A, B12, iodine

Why the MILQ study? To support WHO breastfeeding guidelines

 \succ Current evidence is limited \rightarrow few studies, low sample size, low generalisability

- National policies (dietary or supplements) (
- > Method development of analysing the human milk matrix

DEVELOPING REFERENCE VALUES

→ THE MILQ STUDY

Maternal inclusion criteria	Infant inclusion criteria
Age between 18-40 years old	Term birth (GA 37-42)
Pre-pregnancy BMI 18.5-29.9 kg/m2	Birthweight 2500-4200g
No chronic, severe illness No gestational diabetes or preeclampsia	Without any illness possible to affect breastfeeding, growth or development
Singleton pregnancy	
No intake of multivitamin supplement and low intake of fortified foods	
Willing to breastfeed up to 8.5 months (and exclusively up to 3.5)	\longrightarrow Breastfeeding counselling

Representing a healthy mother-infant cohort

→ THE MILQ STUDY

RECRUITMENT AND DATA COLLECTION

Data collection

- ✓ Maternal and infant anthropometry and body composition
- ✓ Biological samples (human milk, blood, urine, faeces)
- ✓ Dietary intake incl. milk volume (D2O and 24h test weighing)
- ✓ Maternal and infant morbidity
- ✓ Cognitive development

ullet

BREASTFEEDING COUNCELING

- To support WHO recommendations of breastfeeding
 - Breastfeeding counselling was probably one of the main drivers for participation

→ THE MILQ STUDY

	and Lactat	ion Quality
Primary analysis Secondary analysis		
Reference values for macro- and micronutrient concentrations in Human milk oligosaccharides (HMO) human milk		
- Milk RNA (bacteria)		
- Milk volume (D ₂ O and test weighing)		
- Inflammatory markers in human milk		PhD
- Appetite-regulating hormones		study
- Differences within infant sex		
- Infant growth and body composition		

PHD OBJECTIVES

Cytokines and appetite-regulating hormones in human milk and associations with infant growth across four sites: The Mothers, Infants and Lactation Quality Study

Sophie Hilario Christensen¹, Jack Ivor Lewis¹, Hanne Frøkiær², Peter Riber Johnsen², Janet Peerson³, Xiuping Tan⁴, Setereh Shahab-Ferdows³, Daniela Hampel^{3,4}, Munirul Islam⁵, Gilberto Kac⁶, Daniela de Barros Mucci⁷, Amanda C Cunha Figueiredo⁶, Sophie E. Moore^{8,9}, Christian Mølgaard¹, Lindsay H Allen^{3,4}, Kim F Michaelsen¹

associations with birth and breastfeeding outcomes

Sophie Hilario Christensen¹⁴, Ane Lilleøre Rom^{2,3}, Tine Greve⁴, Jack Ivor Lewis¹, Hanne Frøkiær⁵, Lindsay H. Allen⁶, Christian Mølgaard¹, Kristina Martha Renault^{2,7†} and Kim F. Michaelsen^{1†}

¹Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark, ²Department of Obstetrics, Copenhagen University Hospital, Rigshospitalet, Denmark, ³Research Unit of Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark, ⁴Department of Obstetrics and Gynecology. Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark, ⁵Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, ⁶USDA, ARS Western Human Nutrition Research Center, Davis, CA, United States, ⁷Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

MAIN FINDINGS **Paper I**

 Mediation analyses as a statistical tool

Check for updates

OPEN ACCESS

EDITED BY Aifric O'Sullivan, University College Dublin, Ireland

REVIEWED BY Sophie Blat, INRAE, Nutrition Metabolisms Cancer (NUMECAN), France Mariana Muelbert, The University of Auckland, New Zealand

"CORRESPONDENCE Sophie Hilario Christensen sch@nexs.ku.dk

SPECIALTY SECTION This article was submitted to Clinical Nutrition, a section of the journal Frontiers in Nutrition adiposity and appetite-regulating hormones in human milk are mediated through maternal circulating concentrations and might affect infant outcomes

Associations between maternal

Sophie Hilario Christensen^{1*}, Jack Ivor Lewis¹, Anni Larnkjær¹, Hanne Frøkiær², Lindsay H. Allen³, Christian Mølgaard¹ and Kim F. Michaelsen¹

Prontiers | Frontiers in Nutrition

TYPE Original Research PUBLISHED 04 November 2022 DOI 10.3389/fnut.2022.1025439

MAIN FINDINGS **Paper I**

MAIN FINDINGS Paper II

Associations between inflammatory, lipid and metabolic markers and **birth-related outcomes**

	a) Gest	tational age at birt	h (weeks)	b) Birthweight z-score				c) Placental weight	(g)		
Castational marks	β	95% CI	p-value	β	95%	6 CI <i>p</i> -value	β	95% CI	p-value		
<u>Lipid</u>											
HDL (mmol/L)	-1.14	-2.120.15	0.03		-0.92	-1.510.33	<0.01	-52.17	-144.03 - 39.69	0.26	
LDL (mmol/L)	0.06	-0.32 - 0.44	0.76		-0.01	-0.24 - 0.22	0.93	20.23	-14.54 - 54.99	0.25	
Log-VLDL	0.01	-0.21 - 0.24	0.90		0.13	-0.00 - 0.27	0.052	22.17	1.90 - 42.43	0.03	
Total cholesterol (mmol/L)	0.00	-0.40 - 0.41	1.00		-0.06	-0.30 - 0.18	0.63	16.32	-21.73 - 54.36	0.39	
Triglyceride (mmol/L)	0.30	-0.43 - 1.03	0.42		0.60	0.17 - 1.03	<0.01	98.51	36.94 - 160.08	<0.01	
Metabolic											
Leptin (ng/mL)	0.00	-0.03 - 0.04	0.77		0.01	-0.01 - 0.03	0.49	1.18	-1.82 - 4.18	0.44	
Adiponectin (µg/mL)	0.16	-0.19 - 0.51	0.37		-0.20	-0.41 - 0.01	0.065	-15.87	-47.50 - 15.76	0.32	
Insulin (pmol/L)	-0.00	-0.02 - 0.01	0.73		0.00	-0.01 - 0.01	0.73	0.10	-1.63 - 1.83	0.91	
c-peptide (pmol/L)	0.00	-0.00 - 0.00	0.61		0.00	-0.00 - 0.00	0.21	0.11	-0.14 - 0.36	0.39	
Glucose (mmol/L) (OGTT, t=0)	0.46	-0.54 - 1.45	0.36		0.55	-0.04 - 1.15	0.067	-2.77	-91.86 - 86.32	0.95	
Glucose (mmol/L) (OGTT, t=120)	-0.04	-0.39 - 0.31	0.82		0.22	0.03 - 0.41	0.03	-8.98	-40.17 - 22.21	0.57	
HOMA-IR	-0.01	-0.48 - 0.46	0.97		0.11	-0.23 - 0.45	0.51	4.62	-45.48 - 54.73	0.85	
HOMA-IR	-0.01	-0.48 - 0.46	0.97	0.11	-0.23	- 0.45 0.51	4.62	-45.48 - 54.73	0.85		

Table 3. Associations between inflammatory, lipid and metabolic markers measured in maternal plasma at gestational week 28-30 and pregnancy outcomes.

Models were adjusted for the following covariates: a) maternal pre-pregnancy BMI, age and parity; b) maternal pre-pregnancy BMI, age, parity and infant sex; and c) maternal pre-pregnancy BMI, age and parity. p-values in bold indicate significance (p<0.05), and p-values in italic indicate borderline significance (p<0.1).

HDL = High-Density Lipoprotein; HOMA-IR = Homeostasis Model Assessment of Insulin Resistance; hsCRP = high-sensitive C-Reactive Protein; IFN γ = Interferon- γ ; IL = Interleukin; LDL = Low-Density Lipoprotein; OGTT = Oral Glucose Tolerance Test; TNF α = Tumor-Necrosis Factor- α ; VLDL = Very Low-Density Lipoprotein

Associations between inflammatory, lipid and metabolic markers and **breastfeeding outcomes**

	a)	Duration of EBF	(months)	b) Hu	man milk intake (1	c) Human milk marker (conc.)			
Gestational markers	ß	<u>95% CI</u>	p-value	ß	<u>95% CI</u>	<u>p-value</u>	ß	<u>95% CI</u>	p-value
<u>Inflammatory</u>									
Log-hsCRP	0.21	-0.38 - 0.79	0.48	-6.81	-19.70 - 6.07	0.30	-	-	-
Log-TNFa	-0.06	-0.51 - 0.39	0.80	-1.58	-10.86 - 7.69	0.74	-0.04	-0.32 - 0.25	0.80
Log-IFNγ	0.06	-0.23 - 0.35	0.70	1.18	-4.80 - 7.16	0.70	-0.23	-0.53 - 0.06	0.12
Log-IL6	-0.15	-0.56 - 0.26	0.46	0.63	-8.71 - 9.96	0.90	-0.09	-0.46 - 0.28	0.63
Log-IL8	-0.08	-0.43 - 0.27	0.64	-3.06	-10.77 – 4.65	0.43	-0.21	-0.77 - 0.34	0.45
<u>Lipid</u>									
HDL (mmol/L)	1.03	0.07 - 2.00	0.04	19.47	-1.81 - 40.75	0.07	-	-	-
LDL (mmol/L)	0.06	-0.26 - 0.38	0.70	5.44	-1.31 - 12.20	0.11	-	-	-
Log-VLDL	0.11	-0.10 - 0.32	0.31	2.38	-2.13 - 6.89	0.30	-	-	-
Total cholesterol (mmol/L)	0.20	-0.16 - 0.55	0.27	11.17	2.35 – 19.98	0.01	-	-	-
Triglyceride (mmol/L)	0.36	-0.33 - 1.05	0.29	2.48	-13.15 - 18.10	0.75	-	-	-
<u>Metabolic</u>									

Table 4. Associations between inflammatory, lipid and metabolic markers measured in maternal plasma at gestational week 28-30 and breastfeeding outcomes.

<u>Metabolic</u>									
Leptin (ng/mL)	0.03	0.00 - 0.06	0.048	-0.01	-0.70 - 0.67	1.0	0.03	0.00 - 0.06	0.031
Adiponectin (ug/mL)	-0.08	-0.37 - 0.22	0.60	1.46	-4.85 - 7.77	0.65	0.18	0.06 - 0.30	<0.01
Insulin (pmol/L)	0.02	0.00 - 0.04	0.03	-0.44	-0.870.02	0.04	0.00	-0.01 - 0.01	0.92
c-peptide (pmol/L)	0.00	0.00 - 0.00	0.12	-0.03	-0.08 - 0.02	0.27	-	-	-
(OGTT, t=0)	0.50	-0.43 - 1.42	0.29	14.44	-4.10 - 32.99	0.13	-	-	-
Glucose (mmol/L)	-0.24	0.52 0.03	0.08	0.13	-5.81 - 6.07	0.97	-	-	-
HOMA-IR	0.68	0.17 - 1.20	0.01	-1.34	-11.97 – 9.28	0.80	-	-	-

IFN γ = Interferon- γ ; IL = Interleukin; LDL = Low-Density Lipoprotein; OGTT = Oral Glucose Tolerance Test; TNF α = Tumor-Necrosis Factor- α ; VLDL = Very Low-Density Lipoprotein

Predictors of inflammatory, lipid and metabolic markers in pregnancy

		Mate	rnal pre-pregna	ncy BMI		Maternal age			Parity		
_Gestational m	arkers	ß	<u>95% CI</u>	<u>p-value</u>	ß	<u>95% CI</u>	<u>p-value</u>	ß	<u>95% CI</u>	p-value	
Inflammate	<u>0rv</u>										
Log-hsCRP		0.10	0.04 - 0.16	<0.01	-0.00	-0.05 - 0.04	0.90	0.36	-0.04 - 0.76	0.076	
Log-TNFa		0.10	0.01 - 0.18	0.03	0.00	-0.05 - 0.06	0.88	0.41	-0.16 - 0.97	0.15	
Log-IFN ₇		0.10	-0.01 - 0.21	0.068	-0.00	-0.08 - 0.07	0.95	-0.07	-0.80 - 0.66	0.85	
Log-IL6		0.07	-0.01 - 0.16	0.076	-0.03	-0.08 - 0.03	0.38	0.09	-0.46 - 0.65	0.73	
Log-IL8		0.04	-0.05 - 0.12	0.40	-0.04	-0.10 - 0.02	0.24	0.21	-0.36 - 0.79	0.47	
<u>Lipid</u>											
HDL (mmol/I	.)	-0.02	-0.05 - 0.01	0.24	-0.00	-0.03 - 0.02	0.82	0.05	-0.17 - 0.28	0.63	
I DL (mmol/L		0.03	0.12 - 0.07	0.57	0.00	0.06 - 0.07	0.03	0.01	0.60 - 0.62	0 02	
<u>Metabolic</u>											
Leptin (ng/mL)	2.41	1	.31 - 3.51	<0.001	-1.	26 -2.02	0.50	<0.01	5.42	-1.78 - 12.61	
Adiponectin (ug/mL)	-0.09	-0	0.19 - 0.01	0.089	0.0	-0.06	- 0.07	0.90	0.07	-0.58 - 0.72	
Insulin (pmol/L)	5.04	2	.95 - 7.13	< 0.001	-1.	74 -3.20	0.28	0.02	-4.65	-18.72 - 9.43	
c-peptide (pmol/L)	33.25	20	.38 - 46.12	< 0.001	-7.	15 -16.07	- 1.77	0.11	-14.39	-98.98 - 70.20	
Glucose (mmol/L)	0.02	-0	0.02 - 0.05	0.35	0.0	0.01	- 0.06	0.02	-0.03	-0.26 - 0.21	
(OGTT, t=0)								\checkmark			
Glucose (mmol/L)	0.07	-0	0.04 - 0.17	0.24	-0.	00 -0.08	- 0.07	0.92	-0.19	-0.85 - 0.48	
(OGTT, t=120)											
HOMA IR	0.16	0	09 - 0.24	<0.001	-0	03 -0.08	-0.02	0.21	-0.17	-0.68 - 0.33	

Table 5. Maternal predictors of inflammatory, lipid and metabolic markers measured at gestational week 28-30.

Models included all three covariates: maternal pre-pregnancy BMI (kg/m^2), age (years) and parity (nulliparous vs. multiparous). p-values in bold indicate significance (p<0.05), and p-values in italic indicate borderline significance (p<0.1). HDL = High-Density Lipoprotein; HOMA-IR = Homeostasis Model Assessment of Insulin Resistance; hsCRP = high-sensitive C-Reactive Protein; IFN $\gamma = Interferon-\gamma$; IL = Interleukin; LDL = Low-Density Lipoprotein; OGTT = Oral Glucose Tolerance Test; TNF $\alpha = Tumor-Necrosis Factor-\alpha$; VLDL = Very Low-Density Lipoprotein

Conclusion & Discussion

MAIN FINDINGS Paper III

Aim

- 1. To compare HM composition between sites
- 2. To associate HM composition with infant growth

• Human milk samples collected at 1-3.5 months (*n*=820) from all sites

Cytokines and appetite-regulating hormones in human milk and associations with infant growth across four sites: The

Mothers, Infants and Lactation Quality Study

Sophie Hilario Christensen¹, Jack Ivor Lewis¹, Hanne Frøkiær², Peter Riber Johnsen², Janet Peerson³, Xiuping Tan⁴, Setereh Shahab-Ferdows³, Daniela Hampel^{3,4}, Munirul Islam⁵, Gilberto Kac⁶, Daniela de Barros Mucci⁷, Amanda C Cunha Figueiredo⁶, Sophie E. Moore^{8,9}, Christian Mølgaard¹, Lindsay H Allen^{3,4}, Kim F Michaelsen¹

+

MAIN FINDINGS *Paper III*

UNPUBLISHED DATA – DO NOT COPY OR DISTRIBUTE

Adapted from Zhang et al. 2022 & Jahnavi Konduru 2022

→ OTHER FINDINGS FROM THE MILQ STUDY

• Subclinical mastitis → *does SCM affect HM volume or composition?*

OTHER FINDINGS FROM THE MILQ STUDY

• Subclinical mastitis → *does SCM affect HM volume or composition?*

• HM volume \rightarrow do volumes affect infant growth? or HM macros?

•

HUMAN MILK VOLUME AND MACRONUTRIENTS

Association between HM fat concentration and total milk intake

Boys:-30.7 ml per g fat per 100 ml (p=0.002)

Girls: *3.1 ml per g fat per 100 ml (p=0.8)*

→ HUMAN MILK VOLUME AND MACRONUTRIENTS

Association between HM fat concentration and total milk intake

-78.7 ml per g protein per 100 ml (p=0.012)

09-10-2023 33

OTHER FINDINGS FROM THE MILQ STUDY

Subclinical mastitis → does SCM affect HM volume or composition?
 HM macronutrients → do concentrations affect infant growth?
 Milk volume → do concentrations affect infant growth? or milk volume?
 HMO → do concentrations affect infant growth?

→ HUMAN MILK OLIGOSACCHARIDES

To be continued...

UNPUBLISHED DATA – DO NOT COPY OR DISTRIBUTE

OTHER FINDINGS FROM THE MILQ STUDY

- Subclinical mastitis → does SCM affect HM volume or composition?
 HM macronutrients → do concentrations affect infant growth?
 Milk volume → do concentrations affect infant growth? or milk volume?
 HMO → do concentrations affect infant growth?
 - Iodine \rightarrow iodine excretion through HM

OTHER FINDINGS FROM THE MILQ STUDY

• Subclinical mastitis → *does SCM affect HM volume or composition?*

•HM macronutrients \rightarrow do concentrations affect infant growth?

- Milk volume \rightarrow do concentrations affect infant growth? or milk volume?
- HMO → do concentrations affect infant growth?
- Iodine \rightarrow iodine excretion through urine vs. HM
- Milk RNA → characterizing HM cytokines, mo
 - → characterizing the interplay between HM bacteria, HM cytokines, morbidity incl. SCM, milk volume and breastfeeding outcomes

STRENGHTS & LIMITATIONS

TAKE HOME MESSAGE

• Overweight and/or inflammation in pregnancy and lactation may affect

birth outcomes and HM composition \rightarrow

- Implications for the infant are challenging
 - Absorption of components in the infant gut –
 - Infant's own production of appetite-regulating
 - Interplay between the above?
- Generalisability of results → very selected

TABLE 1 Participant characteristics at inclusion.	
Maternal characteristics	All (n = 223)
Pre-pregnancy BMI (kg/m ²)	22.5 (2.5)
$BMI \ge 25 \text{ kg/m}^2$	32 (14)
Gestational weight gain (kg)	13.4 (4.4)
Age (years)	31.5 (3.4)
Higher education	
Short (<3 years)	15 (7)
Medium (3-4 years)	51 (22)
Long (>4 years)	161 (71)
Household income (DKK**)	
<500,000	34 (15)
500,000-799,999	74 (33)
800,000-999,999	71 (31)
>1,000,000	48 (21)

THANK YOU

<u>NEXS</u>

Kim F Michaelsen, Christian Mølgaard Jack Ivor Lewis Anni Larnkjær Birgitte Kronbo Hermansen Inge Rasmussen Kamilla Eriksen Rikke Pilmann

<u>MILQ</u>

Lindsay H Allen Daniela Hampel Setereh Shabab-Ferdows Sophie E Moore Gilberto Kac Munirul Islam **The**

The MILQ consortium The MILQ families The MILQ breastfeeding counsellors

The obstetric departments at Rigshospitalet, Hvidovre and Herlev Hospital

BILL& MELINDA GATES foundation